Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Xia Zhang

Department of Chemistry, XinYang Teachers College, XinYang 464000, People's Republic of China

Correspondence e-mail: yuxiazhang@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.085$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-[(2-Hydroxyphenyl)methyleneamino]-1,3,4-thiadiazole-2(3H)-thione

The title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{2}$, is essentially planar and features an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interaction. Centrosymmetrically related molecules associate via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ Received 21 February 2003
Accepted 24 March 2003
Online 31 March 2003

Comment

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar \& Nizamuddin, 1988; Yadav et al., 1989). In this connection, it was thought of interest to combine a Schiff base with a thiadiazole ring system. Thus, the synthesis and structure of a new compound, namely 5 -[(2-hydroxyphenyl)methyleneamino]-1,3,4-thiadi-azole-2(3H)-thione, (I), is reported.

(I)

The molecular structure of (I) (Fig. 1 and Table 1) has two approximately parallel fragments linked by a Schiff base, with the dihedral angle between the aromatic and thiadiazole rings being $1.0(1)^{\circ}$. The $\mathrm{C} 9-\mathrm{S} 2$ bond length of 1.662 (3) \AA is approximately $0.08 \AA$ shorter than the C9-S1 bond length, confirming the presence of the thione. There is an $\mathrm{O} 1-$ $\mathrm{H} \cdots \mathrm{N} 1$ intramolecular hydrogen-bonding interaction, such that the $\mathrm{O} \cdots \mathrm{N}$ separation is 2.614 (3) \AA, with an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ angle of 146°. Centrosymmetrically related molecules associate via $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{S} 2^{\mathrm{i}}$ contacts $\left[\mathrm{H} \cdots \mathrm{S} 2^{\mathrm{i}}=2.44^{\circ}\right.$ and $\mathrm{N} 3 \cdots \mathrm{~S} 2^{\mathrm{i}}=3.291$ (2) \AA; symmetry code: (i) $-1-x, 1-y$, $1-z]$. There is also a $\mathrm{C} 7-\mathrm{H} \cdots \mathrm{O} 1^{\mathrm{ii}}$ interaction with a $\mathrm{C} 7 \cdots \mathrm{O} 1^{\mathrm{ii}}$ separation of 3.391 (3) \AA [symmetry code: (ii) x, $\left.\frac{1}{2}-y, \frac{1}{2}+z\right]$.

Further work investigating the biological activity of (I) is in progress.

Figure 1
View of (I), showing displacement ellipsoids at the 30% probability level.

Experimental

(I) was prepared using a procedure similar to a reported method (Wang et al., 1999). Yellow single crystals were obtained by recrystallization from a hot ethanol solution of the compound. IR (KBr): $3390(s), 3260(s), 1615(s) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 14.58(1 \mathrm{H}$, $m), 8.89(1 \mathrm{H}, m), 11.15(1 \mathrm{H}, s), 7.02-7.98(4 \mathrm{H}, s)$. Calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{2}$: C 45.23, H2.68, N 17.50%; found: C $45.53, \mathrm{H} 2.97, \mathrm{~N}$ 17.74\%.

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{2}$
$M_{r}=237.30$
Monoclinic, $P 2_{1} / c$
$a=6.587(3) \AA \AA$
$b=13.723(5) \AA$
$c=11.758(5) \AA$
$\beta=99.183(6)^{\circ}$
$V=1049.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 662 reflections
$\theta=3.1-26.0^{\circ}$
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Blessing, 1995; Sheldrick, 1996)
$T_{\text {min }}=0.841, T_{\text {max }}=0.890$
1822 independent reflections
1440 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-4 \rightarrow 7$
$k=-14 \rightarrow 16$
$l=-12 \rightarrow 14$
2862 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.085$
$S=1.06$
1822 reflections
137 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

S1-C 9	$1.743(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.288(3)$
S1-C8	$1.762(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.372(3)$
S2-C9	$1.662(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.339(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.296(3)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.354(3)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.358(3)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$121.16(19)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$121.8(2)$

The H atoms were included in the riding-model approximation.
Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the Science Foundation of Hennan State Education Commission in China (No. 2001150000).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Kumar, R., Giri S. \& Nizamuddin (1988). J. Indian Chem. Soc. 65, 572-573.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. \& Lu, B.-X. (1999). Chem. J. Chin. Univ 20, 1903-1905.
Yadav, L. D. S., Shukla, K. N. \& Singh, H. (1989). Indian J. Chem. B, 28, 78-80.

